Keyword Search Result

[Keyword] sensor network(416hit)

121-140hit(416hit)

  • Mutual Information Evaluation and Optimization of Intermittent Transmission Methods in Energy Harvesting Wireless Sensor Networks

    Xiaohui FAN  Hiraku OKADA  Kentaro KOBAYASHI  Masaaki KATAYAMA  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1826-1834

    Energy harvesting technology was introduced into wireless sensor networks (WSNs) to solve the problem of the short lifetimes of sensor nodes. The technology gives sensor nodes the ability to convert environmental energy into electricity. Sufficient electrical energy can lengthen the lifetime and improve the quality of service of a WSN. This paper proposes a novel use of mutual information to evaluate data transmission behavior in the energy harvesting WSNs. Data at a sink for a node deteriorates over time until the next periodic transmission from the node is received. In this paper, we suggest an optimized intermittent transmission method for WSNs that harvest energy. Our method overcomes the problem of information deterioration without increasing energy cost. We show that by using spatial correlation between different sensor nodes, our proposed method can mitigate information deterioration significantly at the sink.

  • Experiments Validating the Effectiveness of Multi-Point Wireless Energy Transmission with Carrier Shift Diversity Open Access

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Minoru FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1928-1937

    This paper presents a method to seamlessly extend the coverage of energy supply field for wireless sensor networks in order to free sensors from wires and batteries, where the multi-point scheme is employed to overcome path-loss attenuation, while the carrier shift diversity is introduced to mitigate the effect of interference between multiple wave sources. As we focus on the energy transmission part, sensor or communication schemes are out of scope of this paper. To verify the effectiveness of the proposed wireless energy transmission, this paper conducts indoor experiments in which we compare the power distribution and the coverage performance of different energy transmission schemes including conventional single-point, simple multi-point and our proposed multi-point scheme. To easily observe the effect of the standing-wave caused by multipath and interference between multiple wave sources, 3D measurements are performed in an empty room. The results of our experiments together with those of a simulation that assumes a similar antenna setting in free space environment show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are limited by path-loss, standing-wave created by multipath and interference between multiple wave sources. On the other hand, the proposed scheme can overcome power attenuation due to the path-loss as well as the effect of standing-wave created by multipath and interference between multiple wave sources.

  • Coverage Maintenance and Energy Control in Mobile Wireless Sensor Networks

    Tongyu GE  Junhai LUO  Shu ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:9
      Page(s):
    1889-1897

    In mobile wireless sensor networks, coverage and energy are two significant factors determining network performance. When taking both factors into account, the challenges include how to select and migrate nodes to keep coverage quality, how to forecast and prevent potential coverage holes and how to use energy control in mobile networks. In this paper, we propose a new Coverage Maintenance and Energy Control (CMEC) algorithm to achieve and keep high coverage quality and energy efficiency. For CMEC, we provide a new cost metric for selecting migration nodes. Our simulation results confirm that our algorithm improves coverage performance and lifetime of network.

  • High Performance Activity Recognition Framework for Ambient Assisted Living in the Home Network Environment

    Konlakorn WONGPATIKASEREE  Azman Osman LIM  Mitsuru IKEDA  Yasuo TAN  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1766-1778

    Activity recognition has recently been playing an important role in several research domains, especially within the healthcare system. It is important for physicians to know what their patients do in daily life. Nevertheless, existing research work has failed to adequately identify human activity because of the variety of human lifestyles. To address this shortcoming, we propose the high performance activity recognition framework by introducing a new user context and activity location in the activity log (AL2). In this paper, the user's context is comprised by context-aware infrastructure and human posture. We propose a context sensor network to collect information from the surrounding home environment. We also propose a range-based algorithm to classify human posture for combination with the traditional user's context. For recognition process, ontology-based activity recognition (OBAR) is developed. The ontology concept is the main approach that uses to define the semantic information and model human activity in OBAR. We also introduce a new activity log ontology, called AL2 for investigating activities that occur at the user's location at that time. Through experimental studies, the results reveal that the proposed context-aware activity recognition engine architecture can achieve an average accuracy of 96.60%.

  • Token-Scheduled High Throughput Data Collection with Topology Adaptability in Wireless Sensor Network

    Jinzhi LIU  Makoto SUZUKI  Doohwan LEE  Hiroyuki MORIKAWA  

     
    PAPER-Network

      Vol:
    E97-B No:8
      Page(s):
    1656-1666

    This paper presents a data gathering protocol for wireless sensor network applications that require high throughput and topology adaptability under the premises of uniform traffic and energy-rich environments. Insofar as high throughput is concerned, TDMA is more suitable than CSMA. However, traditional TDMA protocols require complex scheduling of transmission time slots. The scheduling burden is the primary barrier to topology adaptability. Under the premises of uniform traffic and energy-rich environments, this paper proposes a token-scheduled multi-channel TDMA protocol named TKN-TWN to ease the scheduling burden while exploiting the advantages of TDMA. TKN-TWN uses multiple tokens to arbitrate data transmission. Due to the simplified scheduling based on tokens, TKN-TWN is able to provide adaptability for topology changes. The contention-free TDMA and multi-channel communication afford TKN-TWN the leverage to sustain high throughput based on pipelined packet forwarding. TKN-TWN further associates the ownership of tokens with transmission slot assignment toward throughput optimization. We implement TKN-TWN on Tmote Sky with TinyOS 2.1.1 operating system. Experimental results in a deployed network consisting of 32 sensor nodes show that TKN-TWN is robust to network changes caused by occasional node failures. Evaluation also shows that TKN-TWN is able to provide throughput of 9.7KByte/s.

  • A Pseudo-TDMA MAC Protocol Using Randomly Determined Transmission Times for Landslide Prediction Wireless Sensor Networks

    David ASANO  Daichi KUROYANAGI  Hikofumi SUZUKI  Eiki MOTOYAMA  Yasushi FUWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1449-1456

    Landslides during heavy rainfall cause a great amount of damage in terms of both property and human life. To predict landslide disasters, we designed and implemented a wireless sensor network using our existing highly fault tolerant ad-hoc network. Since many sensors must be used, we propose a new MAC protocol that allows the network to support more sensor terminals. Our protocol is a hybrid CSMA/Psuedo-TDMA scheme which allows the terminals to decide their transmission timing independently in a random fashion. A timing beacon is not required, so power consumption can be reduced. Simulation results show that the number of terminals supported by the network can be greatly increased.

  • Quantizer Design Optimized for Distributed Estimation

    Yoon Hak KIM  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:6
      Page(s):
    1639-1643

    We consider the problem of optimizing the quantizer design for distributed estimation systems where all nodes located at different sites collect measurements and transmit quantized data to a fusion node, which then produces an estimate of the parameter of interest. For this problem, the goal is to minimize the amount of information that the nodes have to transmit in order to attain a certain application accuracy. We propose an iterative quantizer design algorithm that seeks to find a non-regular mapping between quantization partitions and their codewords so as to minimize global distortion such as the estimation error. We apply the proposed algorithm to a system where an acoustic amplitude sensor model is employed at each node for source localization. Our experiments demonstrate that a significant performance gain can be achieved by our technique as compared with standard typical designs and even with distributed novel designs recently published.

  • Indoor Localization Algorithm for TDOA Measurement in NLOS Environments

    Xiaosheng YU  Chengdong WU  Long CHENG  

     
    LETTER-Graphs and Networks

      Vol:
    E97-A No:5
      Page(s):
    1149-1152

    The complicated indoor environment such as obstacles causes the non-line of sight (NLOS) environment. In this paper, we propose a voting matrix based residual weighting (VM-Rwgh) algorithm to mitigate NLOS errors in indoor localization system. The voting matrix is employed to provide initial localization results. The residual weighting is used to improve the localization accuracy. The VM-Rwgh algorithm can overcome the effects of NLOS errors, even when more than half of the measurements contain NLOS errors. Simulation results show that the VM-Rwgh algorithm provides higher location accuracy with relatively lower computational complexity in comparison with other methods.

  • A New Path-Based In-Network Join Processing Method for Sensor Networks

    Jae Wook PARK  Yong Kyu LEE  

     
    PAPER-Network System

      Vol:
    E97-B No:3
      Page(s):
    602-609

    Methods for in-network joins of sensing data with tuples, in partitioned condition tables stored in sensor nodes, have been studied for efficient event detection. A recently proposed method performs the join operation after distributing the tuples of a condition table evenly among homogeneous sensor nodes with the same storage capacity. In the method, the condition table is horizontally partitioned, and each partition is allocated to the corresponding node, along the path from the highest level to the leaf level. If the path length is larger than the number of partitions, the second round distribution of the partitions resumes from the node at the next level, and so on. Thus, the last node at each round can be assigned the partition that is smaller than the others, which would otherwise cause wasted internal fragmentation. Further, little research has been conducted on methods for the cases of heterogeneous sensor nodes with different available spaces, as well as the vertical partitioning of condition table. In this study, we propose a method of partitioning a condition table that utilizes the internal fragmentation, by treating the tuples of a condition table as a circular list. The proposed method is applicable to the case in which nodes have different available spaces. Furthermore, a new method for vertically partitioning a condition table is suggested. Experiments verify the reduction in the data transmission amount offered by the proposed methods, as compared to existing methods.

  • Low Cost Error Correction for Multi-Hop Data Aggregation Using Compressed Sensing

    Guangming CAO  Peter JUNG  Slawomir STANCZAK  Fengqi YU  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    331-334

    Packet loss and energy dissipation are two major challenges of designing large-scale wireless sensor networks. Since sensing data is spatially correlated, compressed sensing (CS) is a promising reconstruction scheme to provide low-cost packet error correction and load balancing. In this letter, assuming a multi-hop network topology, we present a CS-oriented data aggregation scheme with a new measurement matrix which balances energy consumption of the nodes and allows for recovery of lost packets at fusion center without additional transmissions. Comparisons with existing methods show that the proposed scheme offers higher recovery precision and less energy consumption on TinyOS.

  • RMRP: A Reliable MAC and Routing Protocol for Congestion in IEEE 802.15.4 Based Wireless Sensor Networks

    Young-Duk KIM  Won-Seok KANG  Kookrae CHO  Dongkyun KIM  

     
    PAPER

      Vol:
    E96-B No:12
      Page(s):
    2998-3006

    In general, the sensor network has a many-to-one communication architecture wherein each node transmits its data to a sink. This leads the congested nodes to die early and nodes nears the sink suffer from significant traffic concentrations. In this paper, we propose a cross-layer based routing and MAC protocol which is compatible with the IEEE 802.15.4 standard without additional overhead. The key mechanism is to provide dynamic route discovery and route maintenance operations to avoid and mitigate the most congested nodes by monitoring link status such as link delay, buffer occupancy and residential energy. In addition, the proposed protocol also provides a dynamic tuning of BE (Binary Exponent) and frame retransmission opportunities according to the hop distance to the sink node to mitigate funnel effects. We conducted simulations, verifying the performance over existing protocols.

  • Effective Barrier Coverage Constructions for Improving Border Security in Wireless Sensor Networks

    Manato FUJIMOTO  Hayato OZAKI  Takuya SUZUKI  Hiroaki KOYAMASHITA  Tomotaka WADA  Kouichi MUTSUURA  Hiromi OKADA  

     
    PAPER

      Vol:
    E96-B No:12
      Page(s):
    3007-3016

    Recently, the border security systems attract attention as large-scale monitoring system in wireless sensor networks (WSNs). In the border security systems whose aim is the monitoring of illegal immigrants and the information management in long-period, it deploys a lot of sensor nodes that have the communication and sensing functions in the detection area. Hence, the border security systems are necessary to reduce the power consumption of the whole system in order to extend the system lifetime and accurately monitor the track of illegal immigrants. In this paper, we propose two effective barrier coverage construction methods by switch dynamically operation modes of sensor nodes to reduce the operating time of the sensing function that wastes a lot of power consumption. We carry out performance evaluations by computer simulations to show the effectiveness of two proposed methods and show that the proposed methods are suitable for the border security systems.

  • Natural Synchronization of Wireless Sensor Networks by Noise-Induced Phase Synchronization Phenomenon Open Access

    Hiroyuki YASUDA  Mikio HASEGAWA  

     
    PAPER

      Vol:
    E96-B No:11
      Page(s):
    2749-2755

    We propose a natural synchronization scheme for wireless uncoupled devices, without any signal exchange among them. Our proposed scheme only uses natural environmental fluctuations, such as the temperature or humidity of the air, the environmental sounds, and so on, for the synchronization of the uncoupled devices. This proposed synchronization is realized based on the noise-induced synchronization phenomenon, uncoupled nonlinear oscillators synchronize with each other only by adding identical common noises to each of them. Based on the theory of this phenomenon, the oscillators can also be synchronized by noise sequences, which are not perfectly identical signals. Since the environmental natural fluctuations collected at neighboring locations are similar to each other and cross-correlation becomes high, our proposed scheme enabling synchronization only by natural environmental fluctuations can be realized. As an application of this proposed synchronization, we introduce wireless sensor networks, for which synchronization is important for reducing power consumption by intermittent data transmission. We collect environmental fluctuations using the wireless sensor network devices. Our results show that the wireless sensor network devices can be synchronized only by the independently collected natural signals, such as temperature and humidity, at each wireless sensor device.

  • Load Balancing of Multi-Sink Sensor Networks with Asymmetric Topology and Traffic Patterns

    Yuta AOKI  Tadao OISHI  Masaki BANDAI  Munehiro FUKUDA  Takashi WATANABE  

     
    PAPER-Network

      Vol:
    E96-B No:10
      Page(s):
    2601-2614

    In wireless sensor networks, energy depletion of bottleneck nodes which have more data packets to relay than others, dominates the network lifetime referred to as the funnel effect problem. To overcome this problem, multiple sink methods have been proposed where sensor nodes send observed data packets toward several sinks to distribute traffic load of bottleneck nodes. If both of the topology and the traffic pattern are symmetric, bottleneck nodes are located near sinks. However, in a general sensor network with an asymmetric topology and/or an asymmetric traffic pattern, bottleneck nodes may exist any place in the network. In this paper, we propose DCAM (DispersiveCast of packets to Avoid bottleneck nodes for Multiple sink sensor network), which is a load balancing method to improve lifetime of a sensor network with an asymmetric topology and an asymmetric traffic pattern. DCAM first finds bottleneck nodes, and then balances the load on the bottleneck nodes. Selected nodes send data packets to several sinks dispersively according to some criteria. The criteria classify DCAM into three variations: DCAM with probability (DCAM-P), DCAM with moving boarder (DCAM-MB), and DCAM with round-robin (DCAM-RR). This paper gives details of the DCAM methods, and thereafter evaluates them with asymmetric topologies and asymmetric traffic patterns. To deal with these dynamic asymmetry, the topology is modeled by a grid network with virtual holes that are defined as vacant places of nodes in the network. Asymmetry of traffic pattern is modeled by defining a hot area where nodes have heavier data traffic than the others. The evaluations are conducted as changing hot-area traffic patterns as well as fixing hot-area patterns. The results show that DCAM improves network lifetime up to 1.87 times longer than the conventional schemes, (i.e., nearest sink transmissions and optimal dispersive cast of packet). We also discuss DCAM on several aspects such as overhead, energy consumption, and applications.

  • An Efficient Hybrid Cryptographic Scheme for Wireless Sensor Network with Network Coding

    Man LIANG  Haibin KAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:9
      Page(s):
    1889-1894

    Wireless sensor network (WSN) using network coding is vulnerable to pollution attacks. Existing authentication schemes addressing this attack either burden the sensor node with a higher computation overhead, or fail to provide an efficient way to mitigate two recently reported attacks: tag pollution attacks and repetitive attacks, which makes them inapplicable to WSN. This paper proposes an efficient hybrid cryptographic scheme for WSN with securing network coding. Our scheme can resist not only normal pollution attacks, but the emerging tag pollution and repetitive attacks in an efficient way. In particular, our scheme is immediately suited for distributing multiple generations using a single public key. Experimental results show that our scheme can significantly improve the computation efficiency at a sensor node under the two above-mentioned attacks.

  • Location-Based Key Management Structure for Secure Group Communication in Wireless Sensor Networks

    Jin Myoung KIM  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:9
      Page(s):
    2183-2189

    Many applications of wireless sensor networks (WSNs) require secure communication. The tree-based key management scheme, which is a symmetric key scheme, provides backward and forward secrecy. The sensor nodes in the communication group share a secret key for encrypting messages. When the sensor nodes are added to or evicted from the group, the group key has to be updated by sending rekeying messages. In this paper, we propose a method of key tree structure (KTS) generation by considering the addition and eviction ratio of sensor nodes to reduce the number of rekeying messages, which is influenced by the structure of the tree. For this, we define an extension of an existing tree structure such as a binary or ternary tree and generate KTS using an A* algorithm. To reduce the energy consumed by the message transmission, we also exploit genetic algorithm (GA) to build a secure communication group by considering the KTS. In the paper, we show the effectiveness of the proposed method compared with the existing structure via the simulation in terms of memory usage, the number of rekeying messages and energy consumption.

  • A Distributed TDMA-Based Data Gathering Scheme for Wireless Sensor Networks

    Tao LIU  Tianrui LI  Yihong CHEN  

     
    LETTER-Information Network

      Vol:
    E96-D No:9
      Page(s):
    2135-2138

    In this letter, a distributed TDMA-based data gathering scheme for wireless sensor networks, called DTDGS, is proposed in order to avoid transmission collisions, achieve high levels of power conservation and improve network lifetime. Our study is based on corona-based network division and a distributed TDMA-based scheduling mechanism. Different from a centralized algorithm, DTDGS does not need a centralized gateway to assign the transmission time slots and compute the route for each node. In DTDGS, each node selects its transmission slots and next-hop forwarding node according to the information gathered from neighbor nodes. It aims at avoiding transmission collisions and balancing energy consumption among nodes in the same corona. Compared with previous data gathering schemes, DTDGS is highly scalable and energy efficient. Simulation results show high the energy efficiency of DTDGS.

  • Security Analysis of a Distributed Reprogramming Protocol for Wireless Sensor Networks

    Yong YU  Jianbing NI  Ying SUN  

     
    LETTER-Information Network

      Vol:
    E96-D No:8
      Page(s):
    1875-1877

    Reprogramming for wireless sensor networks is essential to upload new code or to alter the functionality of existing code. To overcome the weakness of the centralized approach of the traditional solutions, He et al. proposed the notion of distributed reprogramming where multiple authorized network users are able to reprogram sensor nodes without involving the base station. They also gave a novel distributed reprogramming protocol called SDRP by using identity-based signature, and provided a comprehensive security analysis for their protocol. In this letter, unfortunately, we demonstrate that SDRP is insecure as the protocol fails to satisfy the property of authenticity and integrity of code images, the most important security requirement of a secure reprogramming protocol.

  • Ray-Model-Based Routing for Underwater Acoustic Sensor Networks Accounting for Anisotropic Sound Propagation

    Ping WANG  Lin ZHANG  Victor O.K. LI  

     
    PAPER-Network

      Vol:
    E96-B No:8
      Page(s):
    2060-2068

    In classical routing protocols, geographical distances/locations are typically used as the metric to select the best route, under the assumption that shorter distances exhibit lower energy consumption and nodes within the communication range of the sender can receive packets with a certain success probability. However, in underwater acoustic sensor networks (UASNs), sound propagation in the ocean medium is more complex than that in the air due to many factors, including sound speed variations and the interaction of sound waves with the sea surface and floor, causing the sound rays to bend. Therefore, propagation of sound is anisotropic in water, and may cause a phenomenon called shadow zone where nodes in the communication range of the sender cannot hear any signal. This renders conventional routing protocols no longer energy-efficient. In this paper, we make use of the ray-model to account for the environment-dependent behavior of the underwater channel, re-define nodes' one-hop neighbors based on signal attenuation rather than geographical distance, and design a distributed energy-efficient routing protocol for UASNs. Results show that our ray-model-based routing policy consistently outperforms the shortest path policy, and performs very close to the optimal one in several scenarios.

  • Increasing Lifetime of a Two-Dimensional Wireless Sensor Network Using Radio Range Adjustments

    Hamidreza TAVAKOLI  Majid NADERI  

     
    PAPER-Information Network

      Vol:
    E96-D No:7
      Page(s):
    1489-1494

    Optimizing lifetime of a wireless sensor network has received considerable attention in recent years. In this paper, using the feasibility and simplicity of grid-based clustering and routing schemes, we investigate optimizing lifetime of a two-dimensional wireless sensor network. Thus how to determine the optimal grid sizes in order to prolong network lifetime becomes an important problem. At first, we propose a model for lifetime of a grid in equal-grid model. We also consider that nodes can transfer packets to a grid which is two or more grids away in order to investigate the trade-off between traffic and transmission energy consumption. After developing the model for an adjustable-grid scenario, in order to optimize lifetime of the network, we derive the optimal values for dimensions of the grids. The results show that if radio ranges are adjusted appropriately, the network lifetime in adjustable-grid model is prolonged compared with the best case where an equal-grid model is used.

121-140hit(416hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.